Измерители параметров электровакуумных и полупроводниковых приборов

РАСОВ Д.Д.

ГПОУ «СЦБТ»

Основные характеристики указываются на лицевой панели измерителей.

По виду индикации измерители подразделяются на *аналоговые* и *цифровые*.

По назначению различают:

- мультиметры для проверки целостности p—n-переходов диодов и транзисторов (Ц);
 - измерители параметров электровакуумных приборов (Л1);
- измерители параметров полупроводниковых приборов диодов, транзисторов и интегральных микросхем ИМС (Л2);
 - логические анализаторы (ЛА).

Основными метрологическими характеристиками измерителей являются:

- назначение прибора;
- измеряемые параметры;
- диапазон измерения параметров;
- погрешность измерения.

Проверка годности электровакуумных, полупроводниковых приборов и аналоговых ИМС (АИМС) осуществляется посредством измерения и сравнения качественных характеристик со справочными.

Если измеренные параметры соответствуют справочным, проверяемый прибор считается годным.

Мультиметры (как аналоговые, так и цифровые) используют для проверки целостности p-n-переходов диодов и транзисторов. Эта операция называется «прозвонкой».

Проверка исправности диодов заключается в измерении прямого и обратного сопротивлений p-n-перехода. Сначала отрицательный (общий) щуп омметра подключают к аноду диода, а плюсовой — к катоду. При этом p-n-переход диода будет смещен в обратном направлении и омметр покажет очень высокое сопротивление (мегаомы). Затем полярность подключения меняют на обратную, и омметр регистрирует низкое прямое сопротивление p-n-перехода. Если же в обоих направлениях подключения омметра регистрируется низкое сопротивление, значит, p-n-переход диода пробит.

При проверке биполярных транзисторов необходимо помнить, что они имеют два p-n-перехода, поэтому «прозваниваются» они как диоды, т.е. один щуп омметра подключают к выводу базы, а вторым поочередно касаются выводов коллектора и эмиттера.

При «прозвонке» транзисторов следует использовать следующую особенность цифрового мультиметра. При измерении сопротивления максимальное напряжение на его щупах не превышает 0,2 В, а p-n-переходы кремниевых полупроводников открываются при напряжении более 0,6 В. Следовательно, в режиме измерения сопротивления цифровым мультиметром p-n-переходы приборов, припаянных к плате, не открываются, и в этом режиме цифровой мультиметр измеряет напряжение. Значение напряжения на щупах аналогового мультиметра в этом режиме достаточно для открывания p-n-переходов.

Для «прозвонки» p-n-переходов в цифровой мультиметр введен специальный поддиапазон, обозначаемый условным графическим изображением диода на шкале переключателя параметров. Рабочее напряжение на щупах мультиметра в этом режиме равно 0... 2 В, а ток через щупы не превышает 1 мкА. Таким током невозможно пробить даже самый маломощный полупроводник.

Некоторые типы мультиметров обеспечивают измерение следующих качественных параметров диодов и биполярных транзисторов:

- h_{216} (h_{219}) коэффициент передачи тока в схеме с общей базой (общим эмиттером);
- $I_{\kappa, 60}$ (I_{CBO}) обратный ток коллектора (ток неосновных носителей).

При проверке качественных параметров диодов и транзисторов лучше использовать специализированные приборы классификационной подгруппы Л2. Отдельные приборы этой подгруппы позволяют проверить качественные параметры АИМС.

Основные параметры, проверяемые с помощью измерителей подгруппы Л2, следующие:

- выпрямительные диоды прямое напряжение (U_F) и обратный ток (I_R);
 - стабилитроны напряжение стабилизации (U_z);
- биполярные транзисторы коэффициент передачи тока (h_{21}) , обратный ток коллектора (I_{CBO}) , выходная проводимость (h_{22}) , граничная частота (f_{rp}) ;
- аналоговые ИМС коэффициент усиления напряжения K_U (A_U), выходное напряжение $U_{\text{вых}}$ (U_{01} , U_{02}), потребляемый ток $I_{\text{пот}}$ ($-I_{\text{пот}}$, + $I_{\text{пот}}$), входной ток $I_{\text{вх}}$ (I_1), напряжение смещения $U_{\text{см}}$ (U_{10}).

Логические цифровые интегральные микросхемы (ЦИМС) проверяются измерителями подгруппы Л2 посредством тестового контроля, т. е. при различных комбинациях логических уровней на их входах измеряется напряжение на выходе.

- Проверка микросхем (так же, как диодов и транзисторов) начинается с работы со справочником, из которого берут следующие данные:
- цоколевка (диода, транзистора, ИМС), на основании которой испытуемый объект подключается к зажимам прибора или устанавливается в адаптер;
- напряжение питания, подаваемое на испытуемый объект, для обеспечения его работы;
- значения входных напряжений АИМС и значения напряжений, соответствующих уровням логических единицы и нуля ЦИМС;
- структурная схема, номера выводов заземления, напряжение питания, номера входов и выходов ЦИМС.

Примеры решения задач

Пример 8.1. Требуется определить полное название прибора, представленного на рис. 8.1.

Решение. Л2-47 — измеритель электронный аналоговый параметров аналоговых интегральных микросхем.

Пример 8.2. Требуется определить параметры АИМС, измеряемые прибором Л2-47, используя рис. 8.1.

Решение. Выходное напряжение U_{02} , коэффициент усиления A_U , входной ток I_1 , потребляемые токи $\pm I_{\text{пот}}$, напряжение смещения U_{10} .

Пример 8.3. Требуется определить диапазон измерения коэффициента усиления прибором, показанным на рис. 8.1.

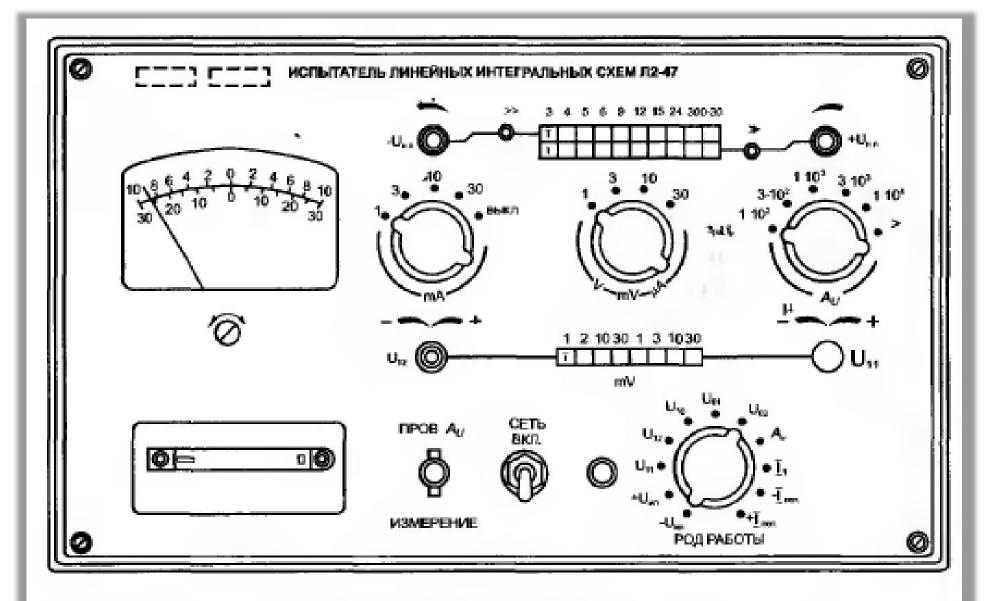


Рис. 8.1. Изображение лицевой панели прибора Л2-47

Решение. Коэффициент $A_{U \min}$ определяем при минимальном положении переключателя пределов прибора « A_U », т.е. при $1 \cdot 10^2 = 100$. Используем для расчета верхнюю шкалу индикатора «10», кратную 100. При этом переходный коэффициент шкалы

$$K_{\text{III}} = \frac{1 \cdot 10^2}{10} = 10.$$

Первое от нуля оцифрованное деление на выбранной шкале прибора — это 2, следовательно, $A_{U \min} = 2 \cdot 10 = 20$.

Коэффициент $A_{U\,\text{max}}$ определяем при максимальном положении переключателя пределов « A_{U} », т.е. при $1\cdot 10^4$, тогда $A_{U\,\text{max}}=1\cdot 10^4=10\,000$.

Следовательно, диапазон измерения коэффициента усиления АИМС от 20 до 10 000.

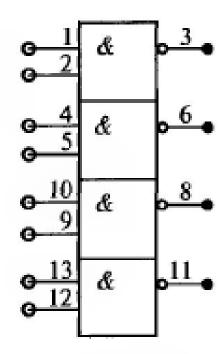


Рис. 8.2. Микросхема КР531ЛА3

Пример 8.4. Требуется составить программу испытаний и проверить ЦИМС КР531ЛА3, показанную на рис. 8.2.

Решение. По справочнику [16] определяем следующие данные ЦИМС:

- напряжение источника питания $U_{\text{и.п}} = +5\text{B} \pm 5\%$;
- значения напряжений, соответствующие уровням логических нуля и единицы, $U^0 \le 0.5 \text{ B}$ и $U^1 \ge 2.7 \text{ B}$;
- условное графическое обозначение ЦИМС с указанием номеров выводов логических элементов.

Микросхема КР531ЛА3 содержит четыре одинаковых элемента 2И—НЕ, следовательно, программа ее проверки будет состоять из набора логических состояний, повторяемых 4 раза, т.е. для каждого элемента, но с разными номерами входов и выходов.

Найдем необходимое и достаточное число не повторяющихся комбинаций на входе одного элемента по формуле $2^n = 2^2 = 4$ (где n — число входов) и составим следующую таблицу истинности, в которую наряду с графами «Входы» и «Выходы» введем еще одну графу — «Измеренное напряжение $U_{\text{вых}}$, В»:

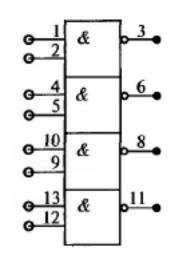


Рис. 8.2. Микросхема КР531ЛА3

	Входы		Измеренное напряжение $U_{\text{вых}}$, В
1-й	2-й	3-й	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Задачи для самостоятельного решения

- 8.1. Определить полное название прибора, изображенного на рис. 8.3.
- **8.2.** По изображению лицевой панели определить параметры, измеряемые прибором Л2-54.
- 8.3. По изображению лицевой панели определить диапазоны измерения прибором Л2-54:
 - 1) коэффициента передачи тока в схеме с общей базой;
- -: 2) коэффициента передачи тока в схеме с общим эмиттером;
 - 3) обратного тока коллектора;
 - 4) выходной проводимости;
 - прямого напряжения диодов;
 - б) обратного тока диодов;
- RI 7) напряжения стабилизации.

- **8.4.** По изображению лицевой панели прибора Л2-47 (см. рис. 8.1) определить диапазоны измерения: U_{10} , U_{01} , I_{1} , I_{nor} .
- 91. **8.5.** Определить диапазон установки $U_{\text{и.п.}}$

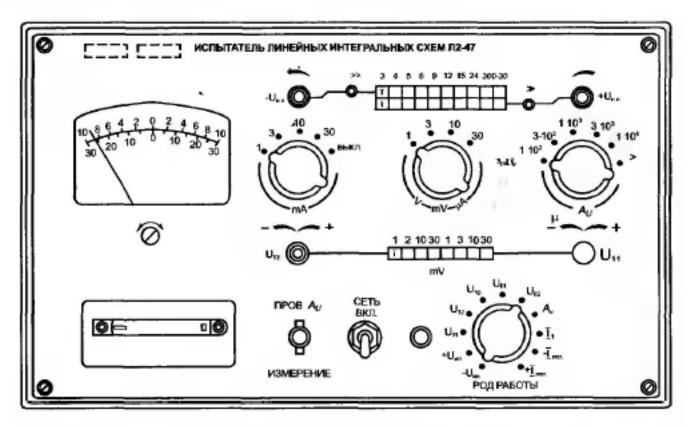


Рис. 8.1. Изображение лицевой панели прибора Л2-47

8.6. Определить по изображению лицевой панели прибора Л2-41 (рис. 8.4) диапазон установки напряжения питания $E_{\rm I}$.

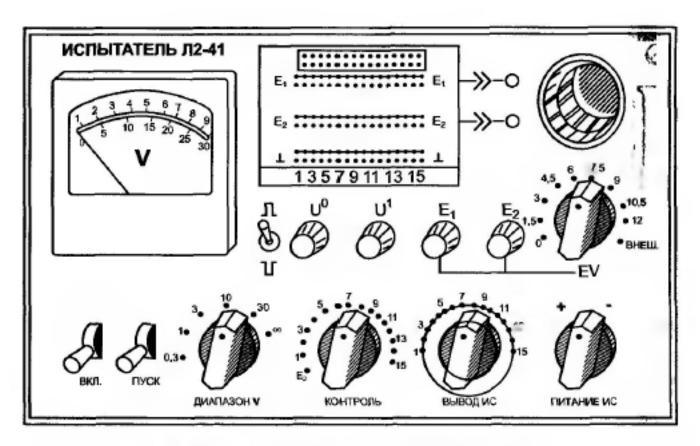
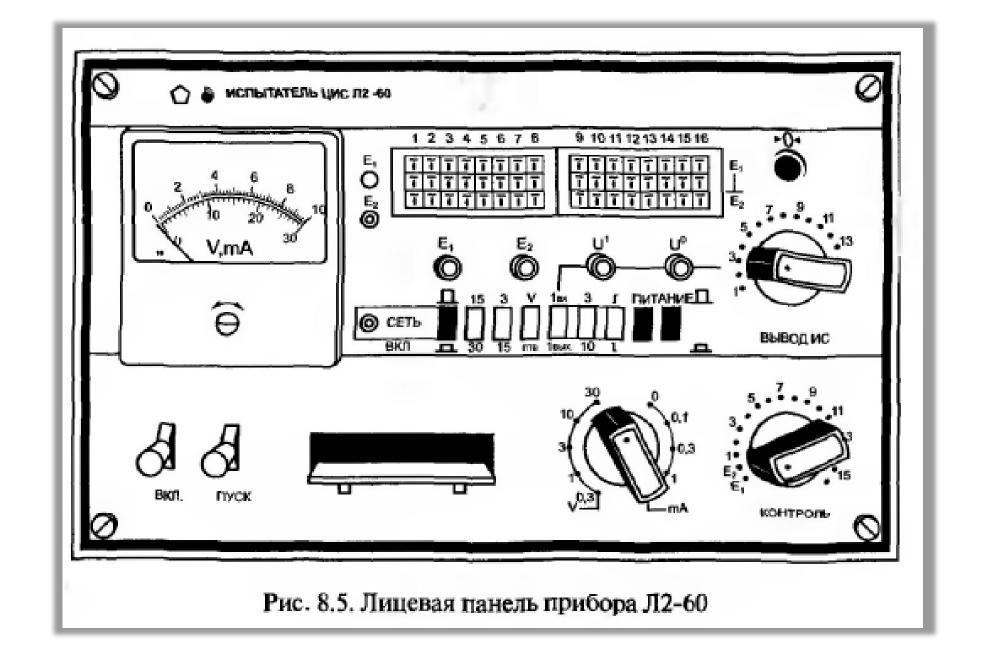
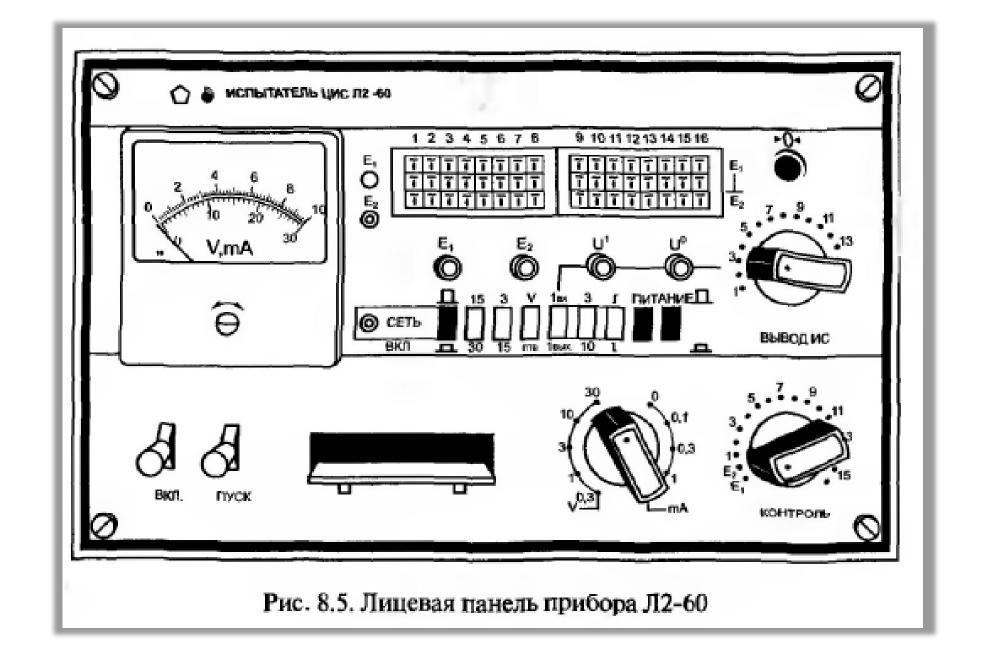




Рис. 8.4. Лицевая панель прибора Л2-41

- 8.7. Составить программы испытаний (таблицы истинности) следующих ЦИМС:
 - К533ЛЛ1 (4 элемента 2 ИЛИ);
 - К533ЛЕ4 (3 элемента 3 ИЛИ—НЕ);
 - К530ЛА1 (2 элемента 4 И—НЕ);
 - К533ЛА4 (3 элемента 3 И—НЕ).
- **8.8.** Определить годность диода КД103A, если в результате проверки получены следующие значения его параметров: $I_{\text{обр}} = 2$ мкA, $U_{\text{пр}} = 0.8$ B.
- **8.9.** Определить годность транзистора КТ381Б, если в результате проверки получили следующие значения его параметров: $h_{21} = 45$, $I_{\kappa, 90} = 5$ мА.
- **8.10.** Определить годность АИМС К140УД1Б, если в результате проверки получили следующие значения ее параметров: $A_U = 2\,050$. $U_{01} = 2,9$ B, $U_{10} = 6$ мB, $I_1 = 3$ мкA, $I_{100} = 5$ мA.
- 8.11. Определить полное название прибора Л2-60, изображение лицевой панели которого представлено на рис. 8.5.

- 8.12. Определить по лицевой панели прибора Л2-60 (см. рис.
- 8.5) следующие диапазоны:
 - 1) измерения постоянных напряжений обеих полярностей;
 - 2) измерения постоянных токов;
 - 3) установки напряжения питания E_1 ;
 - 4) установки напряжения питания E_2 ;
 - 5) установки напряжения логического нуля U^0 ;
 - 6) установки напряжения логической единицы U^1 .

